# $\begin{array}{c} G \text{Lobal Journal of Engineering Science and Researches} \\ \text{Effect of Ce doped on the structural, optical, electrical and} \\ \text{sensing properties of } v_2o_5 \text{ thin films prepared by chemical spray} \\ \text{pyrolysis} \end{array}$

#### I.k.jassim<sup>\*1</sup>, Jamal. M. Rzaij<sup>2</sup>, Iftikhar M. Ali<sup>3</sup> and Isam M. Ibrahim<sup>3</sup>

\*1Professor, Department of physics, College of education, Tikrit University, Iraq
 2Ph.D. student, Department of physics, College of science, Al Anbar University, Iraq
 <sup>3</sup>Assistant Professor, Department of physics, College of science, Baghdad University, Iraq

#### ABSTRACT

 $V_2O_5$  films doped with different cerium concentrations are deposited onto glass, p-type Si (111) and porous silicon (PS) substrates with temperature of 250 C by chemical spray pyrolysis technique (CSPT).  $V_2O_5$  powder was dissolved in distilled water to prepare 0.05 M precursor solution. Ce doped vanadium oxide films were prepared, adding cerium oxide (CeO<sub>2</sub>) with the ratios of 0%, 3%, 5%, 7% and 9% in separate solution. XRD analysis revealed a polycrystalline nature of the orthorhombic structure with the preferred orientation of (010) with nano crystallite size. Atomic Force Microscope (AFM) showed a good uniformity revealing a uniform growth of the films. The spectral absorption of the films occurred at the absorption edge of 550 nm. Un-doped  $V_2O_5$  and doped with different concentration of Ce films have direct allowed transition band gap ranging from 2.2 eV to 2.55 eV according to dopant ratios of Ce. Electrical conductivity and

Hall effect was studied to determine the type of prepared films. Sensitivity of NO<sub>2</sub> and H<sub>2</sub> gas at different doping ratios and different temperatures was calculated.

*Keywords-* vanadium oxide; thin films; structural properties; gas sensor.

# I. INTRODUCTION

Thin films of semi-conducting materials generally have neither the same physical properties nor the same chemistry as the respective bulk material. Moreover, the preparing techniques and deposition processes used to create films dramatically change the physical properties of material such as refractive index, extinction coefficient, homogeneity, density, hardness, internal stress, adhesion to substrate and crystal structure. Therefore, the difference in physical properties between bulk and thin film material depends strongly on many factors such as the type of deposition process itself, deposition temperature, deposition rate, gas pressure, substrate geometry and preparation of the coating material and the post-deposition temperature [1].

Among the transition metal oxide semiconductors, vanadium pentoxide has drawn significant interest over the past decades owing to its wide range of applications. Its multivalency, layered structure, wide optical band gap, good chemical and thermal stability, excellent thermoelectric property, etc., are the characteristics that make vanadium pentoxide  $(V_2O_5)$  a promising material for applications in microelectronics , and for electrochemical and optoelectronic devices. It can be used as a catalyst, gas sensors, a window for solar cell and electrochromic devices as well as electronic and optical switches [2].

 $V_2O_5$  is the most stable oxide and show semiconductor property with an energy gap of ~2.2 eV at room temperature [3], and displays electrochromic properties with varying color from blue to green and yellow within two seconds upon charging/discharging. Electrochromic materials change their optical properties reversibly during electrochemical reactions. These materials are used for smart windows, display devices and controlled reflectance mirrors [4].

Different literature reviews were added to study the structural, optical and electrical properties of Vanadium pentoxide thin films. Structure and semiconducting properties of amorphous vanadium pentoxide obtained by splat cooling [5]. Structural and optical studies for  $V_2O_5$  thin films. The films gave two-step electrochromism, yellow to green and then green to blue [2]. Amorphous and crystalline of  $V_2O_5$  thin films growled onto glass substrates with different concentrations from 0.1M to 0.5M Optical analyses showed the absorption coefficient shifts towards lower energies [6]. Developed a method of a facile synthesis for preparing nano-sized of  $V_2O_5$  for high-rate lithium batteries using vanadyl oxalate in air [7]. In the present paper, un-doped vanadium pentoxide and doped with Ce thin films have been prepared by (CSPT) to produce large area and uniform coating [8].



## **II. EXPERIMENTAL PROCEDURE**

Before starting the deposition, the solutions according to the films components was mixed then put it on the magnetic stirrer for about 15 minutes to be sure that the mixture solutions are mixed properly and to get solution with molarity of 0.05. Prior to deposition, Si substrates (for studying the structural properties) and PS (for studying the gas sensing properties) and glass substrates (for studying the optical and electrical properties) were cleaned and places on the flat plate heater surface, which it is an electrically controlled, and leaves them for about 10 minutes so as to allow their temperature to reach the set temperature at  $(250 \pm 5)$  °C. After that, can start the deposition process within deposition time of 5 sec. then stop this process for 10 sec. In the spray system, compressed and purified air was used as the carrier gas with a 3 kg/cm<sup>2</sup> pressure and the solution spray rate was maintained at 3 mL/min. The distance between the spray nozzle and the substrate was fixed at 30 cm. After the spray process is completed, then the hot plate will be shut down and the samples are left on the surface of the heater to reach the room temperatures, then the substrates can be raised. The X-ray diffraction (XRD) spectra of the films were obtained to verify their crystal structure using a (Cu-K\alpha) radiation with  $\lambda = 0.154$  nm. Optical transmission data were obtained using an UV-Vis double beam spectrometer at wavelengths ranging from 200 nm to 900 nm. Atomic force microscopy (AFM) was employed to observe the surface morphology of the films.

#### **III. RSULTS AND DISCUSSION**

#### **1-** Structural Properties

XRD patterns of un-doped V<sub>2</sub>O<sub>5</sub> and doped with Ce are shown in **Figure (1)**. The films are polycrystalline with planes (200), (010), (110), (101), (400), (301), (600) and (002) which in agreement with [6][9]. The films are crystallized in orthorhombic phase according to International Centre for Diffraction (ICDPDF No.96-101-1226), which in agreement with [10][11][12][13], and with preferred orientation in the (100) direction at diffraction angle of 2 =20.36°, d 4.35 nm and lattice-parameter values of a=11.4734Å, b=4.35809Å and c=3.5533Å. It is very close to the result obtained in [11][14].



Figure (1): The XRD pattern of Ce doped  $V_2O_5$  thin films.

The average crystallite size was calculated using Debye- Scherer's formula and it is found equal to 26.29 nm. For doping with cerium at the concentration of (3 and 5) %. there is no Ce containing phases were detectable, thus indicating a high dispersion of Ce or a very small crystallite size at these concentrations, which is the same result with [15]. When the doping was increased to 7%, two peaks with a weak intensity at about (2 ) equal to: 24.01° and 32.4° for the planes (200) and (112) with tetragonal structure phase, characteristic of cerium orthovanadate (CeVO<sub>4</sub>), according to the (ICDPDF NO.96-900-9764), which indicates that the effect of doping has led to the formation of new phase structure in  $V_2O_5$  films and the atoms of doped material have successfully entered into the Vanadium oxide host lattice. [16].

When the doping rate reaches to the concentration of 9%, new phase of cerium orthovanadate (CeVO<sub>4</sub>) will characteristic with a higher intensity for the new crystalline peaks comparatively with the dopant ratio of 7%, were observable at  $2 = 24.03^{\circ}$  and  $32.32^{\circ}$  with a tetragonal structure for the planes (200) and (112), respectively, characteristic of (CeVO<sub>4</sub>), according to the same card.



The average crystallite size  $(D_{ave})$  for un-doped  $V_2O_5$  and doped with CeO<sub>2</sub> was calculated by scherer and Williamson–Hall formulas, there was a small different in the value of  $(D_{ave})$  between the two formulas, as listed in **table (1)**.

# Table 1. Crystallite size and strain of un-doped $V_2O_5$ films and doped with Ce; $D_{ave}(Sh)$ and $D_{ave}(W)$ are crystallitesize extracted from scherer and Williamson-Hall relation respectively.

| Doping Ratio | D <sub>ave</sub> (Sh) nm | D <sub>ave</sub> (W) nm | Strain |
|--------------|--------------------------|-------------------------|--------|
| 0%           | 26.29                    | 20.69                   | 0.0015 |
| 3%           | 23.31                    | 19.26                   | 0.0011 |
| 5%           | 17.82                    | 14.75                   | 0.0014 |
| 7%           | 17.52                    | 14.29                   | 0.0018 |
| 9%           | 15.84                    | 9.43                    | 0.0060 |

The variation of average crystallite size as a function of the doping ratio is shown in **Figure (2)**, there was decrease in the  $D_{ave}$  value with increase of the dopant concentration at both methods which indicate to nanoparticles formed which it was resulting for the doping process, agreement with [10].



Figure 2. Crystallite size with doping ratio of un-doped V<sub>2</sub>O<sub>5</sub> films and doped with Ce.

**Table (2)** shows the lattice constants (a, b, and c) of the  $V_2O_5$  un-doped and doped with different concentration of Ce films. They are calculated by using the crystalline planes (200), (010) and (101), they were founded an increasing in lattice constants with increasing of the dopant concentration.

| L.C<br>Ce % | a (Å)<br>EXP. | ∆a/a°    | b (Å)<br>EXP. | ∆b/b°    | c (Å)<br>EXP. | ∆c/c°    |
|-------------|---------------|----------|---------------|----------|---------------|----------|
| 0           | 11.473        | 0.00061  | 4.358         | 0.000459 | 3.553         | 0.000563 |
| 3           | 11.503        | 0.002003 | 4.366         | 0.001376 | 3.558         | 0.000844 |
| 5           | 11.527        | 0.004094 | 4.373         | 0.002982 | 3.562         | 0.001969 |
| 7           | 11.551        | 0.006185 | 4.38          | 0.004587 | 3.566         | 0.003094 |
| 9           | 11.575        | 0.008275 | 4.387         | 0.006193 | 3.57          | 0.004219 |

 Table 2. Lattice constant for pure and doped films with Ce.

Figure 2. Crystallite size with doping ratio of un-doped V<sub>2</sub>O<sub>5</sub>

#### Atomic Force Microscopy (AFM) Analysis

Figure (4-11) shows the Atomic force microscopy images and the chart of grain density distribution for  $V_2O_5$  at different CeO<sub>2</sub> as doping rate of (0, 3%, 5%, 7% and 9%). which is deposited on glass substrate .AFM parameters contain average diameter, average roughness, average r.m.s roughness and peak –peak f value for these samples have been shown in **table (3)** which is illustrates decrement in average diameter with increasing of doping ratio from



0 to 9%, while the doped film by 5% Ce have maximum values of roughness and average r.m.s roughness value, (1.59nm) and (1.98), respectively.



Figure 3. AFM images and Size distributions for V<sub>2</sub>O<sub>5</sub> at different doping ratios of Ce.

Figure 3. AFM images and Size distributions for  $V_2O_5$  at different doping ratios of Ce.

## **Optical Properties**

#### 1- Transmission

**Figure (4)** shows the variation of transmittance as a function to the wavelength ranging from 300-900 nm. There was increasing in the transmittance spectrum with increasing of Ce dopant ratio. Transmittance increasing with strongly at the wavelength range of (300-550) nm, then stability after the absorbance edge. Rapid increasing in the transmittance within the range (300-550) nm and the relative stability within the range (550-900)nm, may be due to the electrons intraband transitions.

Un-doped  $V_2O_5$  films and doped with Ce show a high transparency in the visible region. This is due to the lower film absorption [6], which means that films suitable as a window gap for solar cells because the effective spectral region in solar cells are located in the visible region of the spectrum.

The average transmittance at the range of (71-86)% for wavelengths longer than 564nm. Blue shifts towards lower wavelengths with increasing Ce concentration. The minimum value of transmittance is about (79%) which return to the Un-doped sample at 870nm wavelength rang, while the maximum value of transmittance is about (92%) which returns to the dopant sample with 9% Ce at 873 nm wavelength range.





Figure 4. Transmission as a Function of the wavelength for un-doped V<sub>2</sub>O<sub>5</sub> and doped with Ce at different doping ratio.

**Table (4)** show the maximum value of transmittance  $(T_{max})\%$  of Un-doped and doped films, the value of transmittance at wavelength of absorbance edge  $(T_{edg})\%$  and the transmittance at the wavelength of 500 nm (T =500 nm )%.

Table (4):  $(T_{max})$ %,  $(T_{edg})$ % and  $(T_{=500 \text{ nm}})$ % of un-doped and doped  $V_2O_5$  with Ce films as a function to the wavelength

| Symbol | T <sub>max</sub><br>% | $\lambda \left( \frac{T_{max}}{nm} \right)$ | T <sub>edg</sub><br>% | $\lambda(\underline{T_{edg}})$ nm | $\frac{T_{\lambda=500}}{nm}$ |
|--------|-----------------------|---------------------------------------------|-----------------------|-----------------------------------|------------------------------|
| pure   | 79                    | 870                                         | 73                    | 564                               | 73                           |
| 3%     | 82                    | 687                                         | 81                    | 551                               | 81                           |
| 5%     | 85                    | 845                                         | 83                    | 528                               | 83                           |
| 7%     | 88                    | 874                                         | 85                    | 506                               | 85                           |
| 9%     | 92                    | 873                                         | 90                    | 486                               | 89                           |

#### 2- Optical Energy Gap (Eg)

Optical measurements can be used to estimate the energy difference between the valence and conduction bands, the optical band gap ( $E_g$ ), which can help determine the electronic and thermoelectric properties of materials [17]. The optical energy gap values ( $E_g$ ) have been determined by using Tauc formula, it is found that the relation for r =1/2 yields linear dependence, which means that the optical band gap has direct allowed transition. Extrapolating the straight line portion of the plot ( $\alpha$ hv)<sup>2</sup> versus (hv) for zero absorption coefficient value gives the optical band gap ( $E_g$ ). From **Figure (5**), we can observe that un-doped V<sub>2</sub>O<sub>5</sub> and doped with Ce films have direct allowed transition band gap, it was founded about 2.2 eV. This result is reasonable and is very close to other ( $E_g$ ) values found in literature [18][19] [20][21].



Figure (5): Tauc plot for un-doped V<sub>2</sub>O<sub>5</sub> and doped with Ce at different concentrations.

The increasing of Ce concentration from 0 to 9% leads to increase the optical band gap from (2.2 to 2.55) eV, as shown in **Figure (6)**, also there was shifting towards higher energies with increasing dopant concentration.





Figure (6): Variation of  $E_g$  with different doped concentration of Ce.

#### **Electrical Properties**

#### 1. Resistance – Temperature Characteristic

Films were tested to confirm their semiconducting behavior. The sensor is placed on the heater and their resistances are measured in the range from (30 C up to 200 C), with step of 10 C, in the dry air atmosphere. The films display high resistance at lower measuring temperature, and the resistance of the films decreased as the measuring temperature increasing as, seen in **Figure 7**. which is a semiconductor behavior.



Fig. 7 Resistance as a function to the temperature for undoped  $V_2O_5$  and doped with different ratio of Ce.

#### 2. Hall Effect

1

The variation of carriers concentration  $(n_H)$  and Hall mobility  $(\mu_H)$  of un-doped V<sub>2</sub>O<sub>5</sub> and doped with Ce at different doping concentration thin films are shown in **table (5)**.

| Ce (%) | $\sigma_{RT}\left(\Omega^{\text{-1}}.cm^{\text{-1}}\right)$ | $R_{\rm H}$ (cm <sup>3</sup> /coul) | $n_{\rm H}{\times}10^{15}(cm^{-3})$ | Туре | $\mu_{\rm H}(cm^2/\underline{v.s})$ |
|--------|-------------------------------------------------------------|-------------------------------------|-------------------------------------|------|-------------------------------------|
| 0      | 0.1042                                                      | -7500                               | 0.833                               | n    | 781.25                              |
| 3      | 0.1325                                                      | -3500                               | 1.786                               | n    | 463.83                              |
| 5      | 0.1821                                                      | -1200                               | 5.208                               | n    | 218.51                              |
| 7      | 0.2909                                                      | -480                                | 13.021                              | n    | 139.63                              |
| 9      | 0.7228                                                      | -172                                | 36.337                              | n    | 124.32                              |

Table(5): Hall measurements of V<sub>2</sub>O<sub>5</sub> thin films at different Ce dopant ratio.

Hall measurements show that all films have a negative Hall coefficient which denotes to n-type charge carriers and the carrier concentration was increasing with the increasing of Ce dopant ratio, while there was a decrease in carrier mobility ( $\mu_{\rm H}$ ) with increasing of Ce dopant concentration as shown in **Figure (8)**.





Figure 8. The variation of carrier concentration  $(n_H)$  and carrier mobility  $(\mu_H)$  with different concentration of Ce doping ratio.

#### 3. D.C conductivity

The variation of activation energy is summarized in **table (6)** and the plot of  $\ln(\sigma)$  versus  $10^3/T$  in the range of (303-473) K and temperature deposited at 250 C on a glass substrate is shown in **Figure (9)**.

Table 6. D.C activation energies, their ranges and conductivity at room temperature for thin  $V_2O_5$  films atdifferent Ce concentration

| CeO <sub>2</sub><br>(%) | E <sub>a1</sub><br>(eV) | Temperature<br>Range (K) | E <sub>a2</sub><br>(eV) | Temperature<br>Range (K) | $\sigma_{RT}$<br>( $\Omega$ .cm) <sup>-1</sup> |
|-------------------------|-------------------------|--------------------------|-------------------------|--------------------------|------------------------------------------------|
| 0                       | 0.073                   |                          | 0.186                   |                          | 0.1042                                         |
| 3                       | 0.070                   | 202.202                  | 0.182                   | 202.452                  | 0.1325                                         |
| 5                       | 0.065                   | 303-383                  | 0.175                   | 383-475                  | 0.1821                                         |
| 7                       | 0.055                   |                          | 0.163                   |                          | 0.2909                                         |
| 9                       | 0.022                   |                          | 0.130                   |                          | 0.7228                                         |

It can be observed that two separated regions throughout the heating temperature range, the first region is at low temperature within the temperature range of (303-383)K and the second region is at higher temperature (383-473)K, indicating different conduction mechanisms dominating at specific temperature intervals. The activation energy in high temperature region was higher than that of low temperature region.



Fig.9 Plot of  $ln(\sigma)$  vs. 1000/T of un-doped  $V_2O_5$  and doped with different ratio of Ce.

**Figure (10)** shows increasing of electrical conductivity with increase of doping concentration which resulting from the increase in the concentration of charge carriers because of the presence of donor levels in the energy gap. While there was decreasing in activation energy with increase of doping concentration at low temperature region.



Fig.10 Variation of  $\sigma_{RT}$  with doping ratio for un-doped  $V_2O_5$  and doped with different concentration of Ce doping ratio



# **Gas Sensing Measurement**

#### 1) Measurement of N2 Gas

The thin films specimens are examined for gas sensing using  $NO_2$  with concentration of 25 ppm at different operation temperature beginning from room temperature (30 C) up to 200 C with step of 50 C. Figure (11) from (a-e) show the variation of resistance as a function of time with on/off gas valve.

The changing in conductivity essentially is due to the trapping of electrons at adsorbed molecules and band bending induced by these charged molecules The negative charge (electrons) trapped in these oxygen species causes an upward band bending and thus a reduced conductivity compared to the flat band situation [22], when  $O_2$  molecules are adsorbed on the surface of metal oxides, they would extract electrons from the conduction band Ec and trap the electrons at the surface in the form of ions. This will lead a band bending and an electron depleted region. For this reason we show from previous figures increasing in the resistance value when their films exposure to  $NO_2$  gas.

The sensitivity factor (S%) at various operating temperatures is calculated using equation:



Fig. 11 The variation of resistance with time as  $NO_2$  gas (a) Pure films, (b) 3%Ce, (c) 5% Ce, (d) 7% Ce and (e) 9% Ce.



(C) Global Journal Of Engineering Science And Researches

where: is the sensitivity, and are the electrical resistance of the film in the air and electrical resistance of the film in the presence of gas, respectively.

Figure (12) shows the sensitivity as a function of operating temperature for un-doped  $V_2O_5$  and doped with different concentration of Ce.

From Figure (12), The higher sensitivity may be return to the optimum number of inequality on the porosity, largest surface area, larger rate of oxidation and the optimum surface roughness.

The *maximum sensitivity* to NO<sub>2</sub> gas was observed to the film doped of 3% Ce and founded to be 150% at the optimal temperature ( $T_0=200$  C), as shown in **table (7)**.



Fig. 12 Variation of NO<sub>2</sub> sensitivity with operating temperature of un-doped V<sub>2</sub>O<sub>5</sub> and doped with Ce thin films.

| Samula | Sensitivity % at |     |     |     |  |
|--------|------------------|-----|-----|-----|--|
| Sample | RT               | 100 | 150 | 200 |  |
| pure   | 18               | 43  | 31  | 43  |  |
| 3%Ce   | 32               | 4   | 38  | 150 |  |
| 5% Ce  | 38               | 20  | 38  | 66  |  |
| 7% Ce  | 29               | 33  | 34  | 35  |  |
| 9% Ce  | 17               | 56  | 26  | 79  |  |

Table 7. Sensitivity% of un-doped V<sub>2</sub>O<sub>5</sub> and doped with different ratio of Ce

The relation between the response time and the Recovery time for gas with different Cerium Oxide doping ratio at optimum operating temperature of the un-doped and doped  $V_2O_5$  thin films is shown in **Figure (13)**.



Figure 13. The variation of Response time and Recovery time for NO<sub>2</sub> gas with Ce doping ratio at optimum operating temperature  $T_0=200$  C.



The response speed is studied at the temperature at which the sensor exhibited a maximum sensitivity. The below figure shows that the 3% Ce doped samples at 200 C exhibits a fast response speed (4.38 S) with recovery time (4.2 S) this revealed that a small quantity of impurities is **the best doping ratio** to achieve fast response sensor. The quick response sensor for NO<sub>2</sub> gas may be due to faster oxidation of gas, in addition, it can be attributed to the increasing in oxygen vacancies created upon V<sub>2</sub>O<sub>5</sub>:Ce lattice. Besides that, ions of Neodymium occupy energy level below conduction band and behave as an activator, consequently electrons easily move to conduction band, and increased the adsorption of oxygen on the surface extracts conduction electrons from the near surface region forming an electron depleted surface layer. That increased number of active adsorption sites and achieved fast response time for sensor's [23].

# 2) Measurement of H<sub>2</sub> Gas

The thin films specimens are examined for gas sensing using  $H_2$  with concentration of 25 ppm at different operation temperature (100, 200 and 300) C.

Figure (14) from (a-b) show the variation of resistance as a function of the time with on/off gas valve.

There was decreasing in the resistance value when their films exposure to  $H_2$  gas, (Gas ON), then the resistance value back downward at the closure of the gas (Gas OFF). The commonly accepted mechanism for that is based on the variation of the surface electron depletion region due to the reaction between hydrogen and the chemisorbed oxygen on the surface.



Fig.14 The variation of resistance with time as H<sub>2</sub> gas (a) Pure films, (b) 3%Ce, (c) 5% Ce, (d) 7% Ce and (e) 9% Ce.



(C) Global Journal Of Engineering Science And Researches

Under an air atmosphere the oxygen molecules can get adsorbed on the surface of the semiconductor and extracts electrons from the conduction band to form oxygen ions. That may lead to the formation of an electron depletion region near the surface, which can greatly increase the resistance due to the decrease of net carrier density. When the sensor is exposed to a hydrogen atmosphere, the hydrogen molecules will react with the adsorbed oxygen species. The redox reaction is exothermic and results in the fast desorption of produced  $H_2O$  molecules from the surface. The released electrons will reduce the thickness of the depletion region, and decrease the resistance of the semiconductors. When the sensor is exposed to the air ambient again, the depletion region will be rebuilt by adsorbed oxygen species. The resistance will regain the initial level before hydrogen response. Moreover, the surface chemisorption of dissociated hydrogen may also play an important role in the hydrogen sensing behavior [24].

The sensitivity factor (S%) at various operating temperatures. The gas sensitivity tests performed at room temperature show no variation on the film conductivity, the **Figure (15 )** shows the sensitivity as a function of operating temperature for un-doped  $V_2O_5$  and doped with different concentration of CeO<sub>2</sub>, which are deposited on the PS substrates. The gas sensitivity tests were performed at 100°C and increased to 300°C by 100 °C step.



*Figure (15): The variation of sensitivity with the operating temperature of the un-doped V*<sub>2</sub>*O*<sub>3</sub>*and doped with Ce thin films.* Results show that the sensitivity of un-doped V<sub>2</sub>*O*<sub>5</sub> and doped with ratio of 3% CeO<sub>2</sub> films increase with increasing of the operating temperature, which leads to an improvement of the films sensitivity may be is attributed to increase in the rate of surface reaction of the target gas. While the film doped with(5, 7, and 9)% with Ce there was decrease in sensitivity at the operating temperature of 200 C and after this operating temperature the sensitivity return to increasing. The reason for this may be that the surface would be unable to oxidize the gas so intensively and the H<sub>2</sub> gas may burn before reaching the surface of the film at this temperature. Thus, the gas sensitivity decreases with increasing temperature. There was an increases and decrease in the sensitivity indicates the adsorption and desorption phenomenon of the gas. The higher sensitivity may be return to the optimum number of inequality on the porosity, largest surface area, larger rate of oxidation and the optimum surface roughness. *The maximum sensitivity* to H<sub>2</sub> gas was observed to the film doped 5% Ce and founded to be 44%, as shown in **table (8)**.



| Sampla | Sensitivity % at |     |     |     |
|--------|------------------|-----|-----|-----|
| Sample | RT               | 100 | 150 | 200 |
| pure   |                  | 12  | 9   | 12  |
| 3%Ce   |                  | 2   | 7   | 41  |
| 5% Ce  |                  | 9   | 7   | 44  |
| 7% Ce  |                  | 9   | 4   | 17  |
| 9% Ce  |                  | 18  | 16  | 25  |

Table (8): Sensitivity% of un-doped V2O5 and doped with different ratio of Ce.

The response speed is studied at the temperature at which the sensor exhibited a maximum sensitivity. Figure (16) shows that the 5% *Ce* doped samples exhibits a fast response speed (4.72) with recovery time (7.96 s) this revealed that a small quantity of impurities is *the best doping ratio* to achieve fast response sensor. While the slow response speed was observed for 3% Ce (9.91 s) with recovery time of (14.56 s).



Figure (16): The variation of Response time and Recovery time for  $H_2$  gas with Ce doping ratio at optimum operating temperature ( $T_0=300$  C).

# **IV. CONCLUSION**

In summary, pure Vanadium pentoxides and doped with 3%, 5%, 7% and 9% of Ce thin films were prepared using spray pyrolysis technique with 0.05 M on glass, Si and PS at substrate temperature of 250 C. Structural analysis showed polycrystalline orthorhombic structure with (010) prefer orientation. When the doping was increased to 7% tetragonal structure phase characteristic of cerium orthovanadate (CeVO<sub>4</sub>). Optical transmittance characteristic revealed increasing with increase doping ratio, also the direct allowed transition band gap increased with increasing of doping ratio. Electrical conductivity measurement showed two stages of conductivity throughout the heating temperature, first activation energy occurs at low temperatures while the second activation energy at high temperatures. Gas sensing measurement for NO<sub>2</sub> gas showed that *the best doping ratio* was 3% with sensitivity of 150% at 200 C, while *the best doping ratio* was 5% with sensitivity of 44% for H<sub>2</sub> gas.

#### REFERENCE

- [1] M.C. Raol and K. Ramachandra Rao2, "Thermal Evaporated V2O5 Thin Films: Thermodynamic Properties," Int. J. ChemTech Res., vol. 6, no. 7, pp. 931–3934, 2014.
- [2] M. Benmoussa, A. Outzourhit, A. Bennouna, and E. . Ameziane, "Electrochromism in sputtered V2O5 thin films: structural and optical studies," Thin Solid Films, vol. 405, no. 1–2, pp. 11–16, 2002.
- [3] C. W. Zou and W. Gao, "Fabrication, Optoelectronic and Photocatalytic Properties of Some Composite Oxide Nanostructures," vol. 11, no. 1, pp. 1–10, 2010.
- [4] K. Takahashi, Y. Wang, and G. Cao, "Growth and electrochromic properties of single-crystal V2O5 nanorod arrays," Appl. Phys. Lett., vol. 86, no. 5, p. 53102, 2005.
- [5] L. RIVOALEN, A. REVCOLEVSCHI, J. LIVAGE, and R. COLLONGUES, "Amorphous vanadium pentoxide," J. Non-Crystalline Solids J. Non-Crystalline Solids, vol. 21, no. 2, pp. 171–179, 1976.
- [6] M. A. Kaid, "Characterization of Electrochromic Vanadium Pentoxide Thin Films Prepared By Spray 37



Pyrolysis," Egypt. J. Solids, vol. 29, no. 2, pp. 273-291, 2006.

- [7] A. Pan, J.-G. Zhang, Z. Nie, G. Cao, B. W. Arey, G. Li, S. Liang, and J. Liu, "Facile synthesized nanorod structured vanadium pentoxide for high-rate lithium batteries," J. Mater. Chem., vol. 20, no. 41, p. 9193, 2010.
- [8] B. Thangaraju and P. Kaliannan, "Polycrystalline Lead Tin Chalcogenide Thin Film Grown by Spray Pyrolysis," CRAT Cryst. Res. Technol., vol. 35, no. 1, pp. 71–75, 2000.
- [9] D. Johansson, "VO<sub>2</sub> films as active infrared shutters," Ph.D.Thesis, University of LINKOPINGS, P.67, 2011.
- [10] M. M. Margoni, K. Ramamurthi, S. Mathuri, T. Manimozhi, R. Rameshbabu, and K. Sethuraman, "Studies on Pure and Fluorine doped Vanadium Pentoxide Thin Films Deposited by Spray Pyrolysis Technique," vol. 7, no. 3, pp. 1072–1078, 2015.
- [11] a Chakrabarti, K. Hermann, and R. Druzinic, "Geometric and electronic structure of vanadium pentoxide: A density functional bulk and surface study," Phys. Rev. B, vol. 59, no. 16, pp. 583–590, 1999.
- [12] V. N. Shevchuk, Y. N. Usatenko, P. Y. Demchenko, O. T. Antonyak, and R. Y. Serkiz, "Nano- and micro-size V 2 O 5 structures," vol. 4, pp. 67–71, 2011.
- [13] R. L. Josephine, S. Suja, and D. R. A, "Application of Renewable Energy Constant Current Source in The Formation of Uniform Surfaced," vol. 10, no. 8, pp. 3713–3716, 2015.
- [14] K. Hermann, M. Witko, R. Druzinic, A. Chakrabarti, B. Tepper, M. Elsner, A. Gorschlüter, H. Kuhlenbeck, and H.-J. Freund, "Properties and identification of oxygen sites at the V2O5(010) surface: theoretical cluster studies and photoemission experiments," J. Electron Spectros. Relat. Phenomena, vol. 98–99, pp. 245–256, 1999.
- [15] "Supported Vanadium Oxide Catalaysts in Oxidation and Oxidative Dehydrogenation Reactions: Structure and Catalaytic Properties," university of Pune, 2004.
- [16] J. Zhao, J. Ni, X. Zhao, and Y. Xiong, "Preparation and characterization of transparent conductive zinc doped tin oxide thin films prepared by radio-frequency magnetron sputtering," J. Wuhan Univ. Technol.-Mat. Sci. Ed. J. Wuhan Univ. Technol. Sci. Ed. Mater. Sci. Ed., vol. 26, no. 3, pp. 388–392, 2011.
- [17] Z. M. Gibbs, A. LaLonde, and G. J. Snyder, "Optical band gap and the Burstein–Moss effect in iodine doped PbTe using diffuse reflectance infrared Fourier transform spectroscopy," New J. Phys., vol. 15, no. 7, p. 075020, 2013.
- [18] Y. Vijayakumar, K. N. Reddy, and A. V. Moholkar, "Influence of the substrate temperature on the structural, optical and thermoelectric properties of sprayed V2O5 thin films," Mater. Technol., vol. 49, no. 3, pp. 371–376, 2015.
- [19] N. M. Tashtousha and O. Kasasbehb, "Optical Properties of Vanadium Pentoxide Thin Films Prepared by Thermal Evaporation Method," JORDAN J. Pharm. Sci., vol. 6, no. 1, pp. 7–15, 2013.
- [20] L. A. R. L. P. A. J. C. Percino-picazo, "Photoluminescence in Nd-doped V 2 O 5," J Mater Sci, vol. 5, no. 3, pp. 2298–2302, 2014.
- [21] M. Benmoussa, A. Outzourhit, R. Jourdani, and A. Bennouna, "Structural, Optical and Electrochromic Properties of Sol Gel V 2 O 5 Thin Films," Act. Passiv. Elec. Comp., vol. 26, no. 4, pp. 245–256, 2003.
- [22] C. Wang, L. Yin, L. Zhang, D. Xiang, and R. Gao, "Metal Oxide Gas Sensors: Sensitivity and Influencing Factors," Sensors, vol. 10, no. 3, pp. 2088–2106, 2010.
- [23] T. Sujitno and S. Sudjatmoko, "The Influence of Platinum Dopant on the Characteristics of SnO<sub>2</sub>Thin Film for Gas Sensor Application," Atom Indo. Atom Indones., vol. 32, no. 2, 2011.
- [24] H. Gu, Z. Wang, and Y. Hu, "Hydrogen Gas Sensors Based on Semiconductor Oxide Nanostructures," Sensors, vol. 12, no. 5, p. 5517, 2012.

